12 research outputs found

    Synthesis, Characterization of Nano- β

    No full text
    It is difficult to synthesize nano-β-tricalcium phosphate (nano-β-TCP) owing to special crystal habit. The aim of this work was to synthesize nano-β-TCP using ethanol-water system and characterize it by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Malvern laser particle size analyzer, and transmission electron microscope (TEM). In addition, the inhibitory effect of nano-β-TCP on human hepatocellular carcinoma (HepG2) cells was also investigated using MTT assay, lactate dehydrogenase (LDH) leakage test, and 4′-6-diamidino-2-phenylindole (DAPI) staining. The results showed that negatively charged rod-like nano-β-TCP with about 55 nm in diameter and 120 nm in length was synthesized, and the average particle size of nano-β-TCP was 72.7 nm. The cell viability revealed that nano-β-TCP caused reduced cell viability of HepG2 cells in a time- and dose-dependent manner. These findings presented here may provide valuable reference data to guide the design of nano-β-TCP-based anticancer drug carrier and therapeutic systems in the future

    Multi-factors including inflammatory/immune, hormones, tumor-related proteins and nutrition associated with chronic prostatitis NIH IIIa+b and IV based on FAMHES project

    No full text
    Abstract Chronic prostatitis (CP) is a complex disease. Fragmentary evidence suggests that factors such as infection and autoimmunity might be associated with CP. To further elucidate potential risk factors, the current study utilized the Fangchenggang Area Male Health and Examination Survey (FAMHES) project; where 22 inflammatory/immune markers, hormone markers, tumor-related proteins, and nutrition-related variables were investigated. We also performed baseline, regression, discriminant, and receiver operating characteristic (ROC) analyses. According to NIH-Chronic Prostatitis Symptom Index (NIH-CPSI), participants were divided into chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS, pain ≥ 4; divided into IIIa and IIIb sub-groups) and non-CPPS (pain = 0; divided into IV and normal sub-groups). Analyses revealed osteocalcin as a consistent protective factor for CP/CPPS, NIH-IIIb, and NIH-IV prostatitis. Further discriminant analysis revealed that ferritin (p = 0.002) and prostate-specific antigen (PSA) (p = 0.010) were significantly associated with NIH-IIIa and NIH-IV prostatitis, respectively. Moreover, ROC analysis suggested that ferritin was the most valuable independent predictor of NIH-IIIa prostatitis (AUC = 0.639, 95% CI = 0.534–0.745, p = 0.006). Together, our study revealed inflammatory/immune markers [immunoglobulin E, Complement (C3, C4), C-reactive protein, anti-streptolysin, and rheumatoid factors], hormone markers (osteocalcin, testosterone, follicle-stimulating hormone, and insulin), tumor-related proteins (carcinoembryonic and PSA), and a nutrition-related variable (ferritin) were significantly associated with CP or one of its subtypes
    corecore